EVERY TWO ELEMENTARILY EQUIVALENT MODELS
HAVE ISOMORPHIC ULTRAPOWERS*

BY
SAHARON SHELAH

ABSTRACT

We prove (without G.C.H.) that every two elementarily equivalent models
have isomorphic ultrapowers, and some related results.

We prove here

THEOREM. Let A be any cardinality, u = min{u: A* > A}. Then there is an
ultrafilter D over A such that:

1) If M, N are elementarily equivalent models of power <y, then M*/D,
N*ID are isomorphic;

2) If M is a model of power < p, 2% < 2* then M*D is " -saturated;

3) If M,, N, are models of cardinality < y < u, of the same language, and
I, ., M,/D, I, .,N,/D are elementarily equivalent then they are isomorphic.

This theorem generalizes Keisler [6] (which proved a stronger result using
G.C.H.) and the proof generalizes the proof of Kunen [12]. Part (1) of the theorem
affirms a well-known conjecture; it is not clear who proposed it. It occurs as open
problem 5 in Chang and Keisler {1]. The problem was attacked by several people
in several ways. Keisler [6] proves: if A* = 2%, then there is an ultrafilter D over 4
such that: if M = N, ||[M || £ A*, | N| £ 2, and the language is of cardinality
< 2 then M*D =~ N*D. By Keisler [8] this can be broken into the following
stages: if 11 = 27 there is a A*-good ultrafilter over 4; if D is a A*-good ultra-
filter over I and M a model with language of cardinality < J, then M'/D is
A+-saturated, and any two elementarily equivalent p-saturated models of car-
dinality p are isomorphic. (See Keisler [8], Keisler [7] and Morley and Vaught
[15]). Another approach was that of Kochen [11] (or Keisler [10] §5). He gen-
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eralizes ultrapower to ultralimits, a generalization which preserves most of the
interesting properties of ultrapower, and proves that any two elementarily equiv-
alent models of cardinalities < 3, have isomorphic ultralimits of cardinality
3.+, Lately, Mansfield has generalized ultrapower in another way, to boolean
ultrapower, and proved for them a parallel isomo-theorem. See [13]. Recently
Kunen [12] succeeded in eliminating G.C.H. from the theorem on the existence
of good ultrafilter, (we generalize his proof.) Silver and, independently, Rucker
proved: it is consistent with ZFC + (X, < 2®o) that there is an ultrafilter D over
o such that for every countable model M with a countable language, M “/D is
saturated. (In fact, this follows easily enough from Martin’s axiom). It is yet an
open question whether forany M, N M = N, M|| =pu, “ NH s, [L(N)| = u;
there is an ultrafilter D over p such that M*/D, N*/D are isomorphic. Maybe
this is independent from ZFC.

By part (1) of our theorem we can eliminate G.C.H. from some theorems
which were used by Keisler [6], especially those concerning the characterization
of elementary classes (Keisler [6]). Also from the theorem “‘a sentence is preserved
under reduced products iff it is equivalent to a Horn sentence” (Keisler [5])
G.C.H. can be eliminated, by the technique used here. G.C.H. was already
eliminated by Galvin [3], using a set theoretic consideration, and by Mansfield
[14] using Boolean ultrapowers.

About ultrapowers and ultraproducts see Los [3], Frayne Morel and Scott [2],
the survey Keisler [9] or Bell and Slomson [16]. We use only the definition.

NoTATION. Through all the paper, A will be a fixed (infinite) cardinal,
p = min{u: * > A}. Notice that ;¢ is a regular cardinal. We use y, k for cardinals;
i,j, k 1, o B, 7y, d for ordinals, m, n for natural numbers; f, for functions from A
into g, and g for functions from A to some y(g) < u. We use F and G for families
of such functions. Speaking of functions f ¢ F with different indexes, we mean
they are different functions. D will denote a proper filter over A. The filter [E]
generated by the family E of subsets of 4 is

{A : A< A, and for some A, -+, A,€E, ( N A,,,) c A} .
m=1
Let 4 =& (mod D) mean that for some X €D, 4 < (/— X). Models will be

denoted by M, N. The universe of M is |M l, and the cardinality of a set A4 is
| 4|, so that the cardinality of (the universe of ) M is | M |.
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DEeFINITION 1. We say that (F, G, D) is k-consistent if

A) D is generated by a family of <« subsets of 4.

B) If fieF,j,<ufori<y<pand ffeF, g"eG
for m < nthen

{k < A:fi(k) = j; for i < y and f™(k) = g"(k) for m £ n} & (modD)

LemmA 1. There is a family F of 2* functions (from A to p) such that
(F,#,{A}) is p-consistent (this generalizes Ketonen’s lemma which was used by
Kunen [12] but both had already appeared in Engelking and Karlowicz [1a].

ProoF. Let H be the set of all pairs (4, k) such that: A is a subset of A of
cardinality < yu; h is a function, from a family S of < pu subsets of A4 into u.
The number of A = 4, AI <pis X,<,A*< p+ A=A For each such 4, the
number of suitable S is

|[{S:Sc{B:Bc4},|S|<u}|= <Z|{S:Sc{B:BcA},lS| =y}

= L |{B:Bc4}ff= Ty Ty = ZA <=1

x<up x<p r<n <p

and for each such S the number of functions from S into pis < u!'st £ A5 = A,
So |H| <A and in fact |[H| = A. Let H = {(4,,ho): k < A}. For every set
B < Adzfinz fyasfollows: fa(i) = h(B[)4,)if hy(B[ )4, is defined, and fz(i) = 0
otherwise. Let F = {fg: B c 4}, and we shall prove that F satisfies our demands.

Let f'eF j,<ufori<y < p,andlet f* = fp, .Clearly iy 7 i, implies B;, 5 B;,.
As we have y < u sets B; = A, there is A < A, [Al = y, such that i; # i, implies
A()B;, # A("\B:,. Define

S = {A(N\Bi: i < x}, K(A[\B) = J for every i <y.
Clearly (4, h)€ H, so for some k < A, (4,h) = (4,,h,). Hence
fi() = fz (k) = h(A(B) = ji-
So
{k:fi(k) = j; forevery i<y} #J
$0
{k:fi(k) = j; for every i <y} # & (mod {A})

and the lemma is proved.

LemMa 2. (A) If (F,G,D) is x-consistent, x < k;, then (F,G,D) is xy-

consistent.
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B) If for every i< 9, (F;,G;,D;) is wi-consistent, for i<j<d, D;= D,
Gi=G;, F;oF;; D ={JicsDi, G =|Ji<sGi, F=(NicsF; and x 2 x; for
every i < 6 and x = cf(d) (the cofinality of 0) then (F,G,D) is k-consistent.

C) If(F,G,D)is k-consistent, F' « F, G’ < G, then (F',G’,D) is k-consistent.

ProOF. Immediate.

LemMMA 3. Suppose (F,J,D) is x-conmsistent, ,u-i—IG' <k, (G a set of
functions from A to cardinals < y). Then there is F' < F, IF— F’} < Kk such
that (F', G, D) is k-consistent.

Proor. Let D be generated by E = {J,: a < k} (J, = 2) and without loss of
generality assume that E is closed under finite intersection. Clearly it suffices to
prove that for every finite subset G, of G there is F(G,), IF (G1)| < x such that
(F — F(Gy), G,, D) is k-consistent, because then
F' = F-|J{F(G): G, =G,|G,| < No}
will satisfy our conclusion.

So let G; = {g¢, ", g} Suppose there is no F(G,) as required. So there is a
case of violation of part (2) of the definition of k-consistency of (F, G, D). We can
remove the involved functions from F, and again we do not get k-consistency.
So we can repeat it k* times. So we can define by induction on § < k¥, (distinct)
functions f%, f*ecF; i< X < s m < n and ordinals j¥ i< Xp < g such that:

D) fLfxleF —{fl,fal:y<Bm < n i<y}

2) for every

Ap = {k < i:forevery i<y, fl(k)=j’ for everym < n f¥(k) = g,(k)}
= J (mod D).

By the definition of D, for every f < x*, as Ay = & (mod D) there is oz < &
such that 4z < (4 —J,g). As the number of «4’s is x, and the number of y; is
< u £ k, whereas the number of B < k* is k™, clearly there are «® <k, y® < p
such that [{[3 <xt:ygp=1% v = &} [ = x*. Without loss of generality
assume that y; = x°, oy = o for every f < p. Let {G&%, -, j¥>: B < y*}
be the set of all sequences of length »n + 1 of ordinals smaller than
¥ = sup{‘g,,,(k)|+ :m = n, k < A}. (The cardinal y* is < u, as each g,, is by
definition a function from 1 into some y < p). (Clearly the number of such
sequences is x*.) Let

A = {k<i:forevery p<y* i<y m<n, flk)=ji,filk)y = ji}.
As y* < p, ¥° <p also y*3® + y* (n+ 1)< p, so as (F,, D) is x-consistent,
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clearly A # & (mod D). Hence it cannot hold that 4 = (1 — J,). So we can
choose keAd, k¢(A—Jyw). As ked, for every B<y*, i<y’ m<n,
k) = jb, (k) = j*£. By the definition of the sequences (j¥* ... j*#>, there
is f < x* such that

gO(k) = j:ﬂ5 ’gn(k) = j:‘ﬂ‘
So by the definition of 4, k€ 4, but

Agc A —Jpo, k¢ (A —Jy0)
contradiction.

LeMMA 4. A) Suppose (F,G,D) is k-consistent A = A. Then there isF'c F,
|F — F'| < psuch that (F',G,[D(J{4}]) is x-consistent or (F', G,[ D[ {4 — 4}])
is K-consistent.

B) If (F,G,D) is k-consistent, A, = A for « <k, and p £ k, then there are
F' < F,|F~F’| £k, and a filter D', D < D’ such that (F’, G, D’} is k-consistent

and for every o < k either A,eD’ or (A— A,)eD’.

Proor. Clearly it suffices to prove A) as B) follows by repeating A) and using
Lemma 2B. Let D; = [D| J{4}] D, = [D|J{4 — 4}]. Dy and D, are generated
by families of < x subsets of 4. (As if D = [E] | E| £ «, then D, = [E(_J{4}],
D, = [ELJ{/1 - A}])

If (F, G, D,) is k-consistent — our conclusion follows. So we can assume that
(F,G,D,) is not k-consistent. So there are f,eF j,<p for i<y<p and
f™eF g"eG for m £ nsuch that

B={k < A:forevery i<y m < n f(k) = j;,f"(k) = g"(k)} = & (modD;).
This implies that for some X €D, B = (A — A J(4 — X). Let

F'=F—{f,f"1i<ym= n}.

If (F',G,D,) is k-consistent, our conclusion follows. So assume (F’, G, D,) is not

x-consistent, and we shall get a contradiction. So there are f*e F’, j*< u for

i<y*<pand f* eF’, g*"eG for m < n* such that

B* = {k<A: for every i <y*, m £ n*f*k) = j5,.f*"(k) = "k} = &
(mod D).

So for some X*eD, B*c(i—X*JA—(A—4)=A-X9(J4. So

B*B<= (4~ X% UG = X) = (A —(X*()X)) and as D is a filter X* (X eD.
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So B* ﬂB = (mod D). Observing what are B and B*, we see that we get a
contradiction to the x-consistency of (F, G, D). (If one D, is not a filter the proof

is the same.)

LemMMA 5. Let M be a model of cardinality y<yp, and 4G ,¢c [MI’1 for
l<ly,1 £m =< n, p £k, and (F,(J, D) is k-consistent. Assume moreover that
p = {0x,y10, v L <lo <x*}, (¢, — formula in the language L of M)
and p is closed under conjunctions and for every 1<l,, A'={k<i: Mk
(3x)pi(x, a1 [K], -, 4y, [K])} € D.

Then there are de|M|*, F' = F, D' > D, such that: |F — F'| £ % (F,&,D)
is Kk-consistent and for every 1 <ly{k < A: Mk ¢p[(alk],q,,[k],---,d,,[k])}eD’.

ReMARK. | M|* is the set of functions from 1 into |M]|.

Proor. Let | M| = {¢;: i<y < pu}. For every I <, let us define a function
g; from A into y( < p) such that:

if MEF (Eix)qb,(x, dl,l[k]’ ""a-l.nl[k]) and J = gl(k)

then M E ¢fc;, d,1[k], -, g, [k].
Let G = {g: I <Iy}. As Iy <k™ and (F,&J,D) is «-consistent, and p < «,
F—F, ] < « such that (F,, G, D) is k-consistent.

there is, by Lemma 3, F; = F,
Choose f € F, and let:
F'=Fy—{f}, d[k] = {cm) =
Lo otherwise
and D’ = [D{ JE] where E = {A;:1 < Io}, 4 = {k<A:ME ¢ [a[kl,a,,[K], - 1}
We shall show that (F',¢, D’) is k-consistent, and hence prove the lemma.
As D is generated by a family E; of < x subsets of 4, clearly D’ is generated

by E,\(JE, |E, JE| = «.
Suppose (F’, (F, D’) is not k-consistent. So there are f,e F',ji< ufori< y, < pn
and X'e D’ such that

A={k<A:foreveryi<y,fik)=j}ci-X"
As p is closed under conjunctions, E is closed under intersection. So there are
XeD, 1<, such that X' = X(")4;. So 4()4; = (2 — X). That is
{k<a: for every i<y,fi(k)=j,ME¢[a[k],d [k], -, a.,[k]} = (A - X).
Hence
{k < u: forevery i <y, fi(k) = ji, f(k) = g(R)} = (A — X J(A — 4"
(A" — defined in the lemma.)
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A contradiction to the k-consistency of (Fy, G,D). Thus we have proved the
lemma.

ReMark. We did not prove explicitly that D’ is a proper filter, but this can be
viewed as a special case of the k-consistency of (F’, (J, D) (with empty set of f;’s).

PROOF OF THE MAIN THEOREM.

ReMARK. 1) The theorem is formulated at the beginning.

2) For simplicity we omit the proof of part (3).

3) From part (2) and Keisler [8] it is clear that D is A*-good. As in Kunen [12]
we can also prove it directly.

We can assume, without loss of generality, that the language of any model M,
[M| <p, is of cardinality < 2MMI< AIME— 3 So let L° be a (first-order)
language of cardinality A, which contains, for every n < w, n >0, A predicates
with n places, and A function symbols with n places. So we can restrict ourselves
to models whose language is included in L°, and whose universeis y = {i: i<y}
for some y < p. Now the number of sublanguages of I? is 2*, and for each such L,
and y < g, there are |L| 2¥ < 3* = 2* L-models with universe x. Let

{(M,N):i< 2%}
be a list of all the pairs of elementarily equivalent models, whose language is
L; c L°, and whose universes are some cardinals <yu. We shall find an ultrafilter
D over A such that: M}/D is isomorphic to N}/D, and M;/D is k *-saturated if
2% < 2% Asthe ultrapowers of isomorphic models are isomorphic this is sufficient.
Let
M)} = {ai: e <2}
|N[* = {Bf: e < 2%,
From considerations of cardinalities, it is clear that there is a function R, defined
for every y < 2* such that
A) For every i <2, o < 2* there is y < 2* such that
R(y) = <i,1,4,).
B) For every i < 2*, a < 2% there is y < 2* such that
R(y) = <i,2,b).
C) For every i <2* and set of formulas p, 2171 < 2% p is closed under con-

junctions and
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p= {¢l(x=yal’15"'a): I< Ipl} ((xl,m< 217¢16Li)

there are y <2, Yoy <V

R(?) = <i,p>: R(yal,m) = <i’1’a-oizl'm> .
D) For every subset A of A, there is y < 2*such that R(y) = A.
E) For every y exactly one of A), B), C), D) occurs.

We shall now define by induction on y < 2*a set of functions F,, afilter D
and functions Hi, i < 2*such that:

1) For every y, (F,&,D,) is (A+|y]-consistent, |Fy|=2% D, = {1},
|F0—~Fy| <A+ ‘y| and for <y Fyc F,, D;o D,.

2) H!is a function from a subset of | M; |* into | N;|*, for B <y, H] extends
Hf,, and IUKzADomHH s |y|

3) If 4,,,+-,d,,€DomH,, by = H\(4,)forl < m < nand ¢(x;,---,x,)eL;
then

{k<i: Mk ¢[a, k]~ ab[KT] < Nk ¢ [B 1K, b, [KIT} €D,

4) If 4} -+, d, e DomH., ¢ € L; then either
{k<a: Mk ¢[a[k], -, d [k]]}eD, or
{k<i: Mk ¢[d,,[K], -, 4, [K]]} € D,.

5) If R(y) = <i,1,d.y then die DomH,, .

6) If R(y) = <i,2,b;) then bieRange H},, .

7) If R(y) = <i, p) and for every ¢(X, Yy, Vs, ) ED
{k<i: M;F(30(x, a, [k],-, a [k])} €D,
then there is di € { M; * such that for every @(X,Vu,, 'y Vo, ) ED
{k <2: M,k ¢p[a[k], i [K], -, @i [K]]} €Dy1q.

8) If R(y) = A < Atheneither AeD,,; or (A —A)eD,,,.

* ok %

?

If we succeed in the induction D = Dy,,, will be the required ultrafilter. By (8)
and (D) it is an ultrafilter. For every i < 27, it is clear that H', induces an iso-
morphism from M}/D onto N/D. [By 5) and (A) the domain of H P is [Mi I’l,
by (6) and (B) its range is | N;|*, and by (3) it preserves all the formulas, hence
all the relations and, in particular, the equality.]. By (7) and (C) M}/D is x*-
saturated whenever 2* < 2%,

Let us return to the definition by induction, which is the only thing remaining

to be proved.
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Case I. y=0.

This follows from Lemma 1. [(3) follows from the elementary equivalence of
M; and N;.]

Case II. vy alimit ordinal.
Define F, = ﬂ,,qu, D, = Uﬁ<yD,, and Hyi = UﬂqHﬂi. It is easy to see that
ail the conditions (1)(8) still hold. In particular (1) follows from Lemma 2.B.

Case III. y = B+ 1, R(B) = {i,1,a.).

First we use Lemma 4.B so that the type realized by 4. over Dom H,‘} will be
decided. Then we use Lemma 5 to extend Hj to {d;}| JDom H,. (We depend on
|Li| = 2)

Case IV. y =+ 1, R(f) = <i,2,b".
The same as Case III.

Case V. y=p+1,R(f) = {i,p).
It follows from Lemma 5.

Case VI. y=+1,R(p) =A(c ).
It follows from Lemma 4.A.

So we prove the theorem.

ReMarRk. We actually proved more than we needed to know about G in order
to prove our main theorem. We could have proved even more: we could have
generalized all our lemmas, except for 2B, to the case where < x° equations
of the form f(k) = g(k) are allowed in Definition 1, with some natural restrictions
imposed on y°. Maybe there is a use for these stronger lemmas.
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