

EVERY TWO ELEMENTARILY EQUIVALENT MODELS HAVE ISOMORPHIC ULTRAPOWERS*

BY

SAHARON SHELAH

ABSTRACT

We prove (without G.C.H.) that every two elementarily equivalent models have isomorphic ultrapowers, and some related results.

We prove here

THEOREM. *Let λ be any cardinality, $\mu = \min \{\mu: \lambda^\mu > \lambda\}$. Then there is an ultrafilter D over λ such that:*

- 1) *If M, N are elementarily equivalent models of power $< \mu$, then $M^2/D, N^2/D$ are isomorphic;*
- 2) *If M is a model of power $< \mu$, $2^\kappa \leq 2^\lambda$, then M^2/D is κ^+ -saturated;*
- 3) *If M_k, N_k are models of cardinality $\leq \chi < \mu$, of the same language, and $\Pi_{k < \lambda} M_k/D, \Pi_{k < \lambda} N_k/D$ are elementarily equivalent then they are isomorphic.*

This theorem generalizes Keisler [6] (which proved a stronger result using G.C.H.) and the proof generalizes the proof of Kunen [12]. Part (1) of the theorem affirms a well-known conjecture; it is not clear who proposed it. It occurs as open problem 5 in Chang and Keisler [1]. The problem was attacked by several people in several ways. Keisler [6] proves: if $\lambda^+ = 2^\lambda$, then there is an ultrafilter D over λ such that: if $M \equiv N$, $\|M\| \leq \lambda^+$, $\|N\| \leq \lambda^+$, and the language is of cardinality $\leq \lambda$ then $M^2/D \cong N^2/D$. By Keisler [8] this can be broken into the following stages: if $\lambda^+ = 2^\lambda$, there is a λ^+ -good ultrafilter over λ ; if D is a λ^+ -good ultrafilter over I and M a model with language of cardinality $\leq \lambda$, then M^I/D is λ^+ -saturated, and any two elementarily equivalent μ -saturated models of cardinality μ are isomorphic. (See Keisler [8], Keisler [7] and Morley and Vaught [15]). Another approach was that of Kochen [11] (or Keisler [10] §5). He gen-

* The preparation of this paper was supported in Part by NSF Grant GP-22937.

Received February 14, 1971

eralizes ultrapower to ultralimits, a generalization which preserves most of the interesting properties of ultrapower, and proves that any two elementarily equivalent models of cardinalities $\leq \beth_\alpha$ have isomorphic ultralimits of cardinality $\beth_{\alpha+\omega}$. Lately, Mansfield has generalized ultrapower in another way, to boolean ultrapower, and proved for them a parallel isomo-theorem. See [13]. Recently Kunen [12] succeeded in eliminating G.C.H. from the theorem on the existence of good ultrafilter, (we generalize his proof.) Silver and, independently, Rucker proved: it is consistent with ZFC + ($\aleph_1 < 2^{\aleph_0}$) that there is an ultrafilter D over ω such that for every countable model M with a countable language, M^ω/D is saturated. (In fact, this follows easily enough from Martin's axiom). It is yet an open question whether for any M, N $M \equiv N$, $\|M\| \leq \mu$, $\|N\| \leq \mu$, $|L(N)| \leq \mu$; there is an ultrafilter D over μ such that M^μ/D , N^μ/D are isomorphic. Maybe this is independent from ZFC.

By part (1) of our theorem we can eliminate G.C.H. from some theorems which were used by Keisler [6], especially those concerning the characterization of elementary classes (Keisler [6]). Also from the theorem "a sentence is preserved under reduced products iff it is equivalent to a Horn sentence" (Keisler [5]) G.C.H. can be eliminated, by the technique used here. G.C.H. was already eliminated by Galvin [3], using a set theoretic consideration, and by Mansfield [14] using Boolean ultrapowers.

About ultrapowers and ultraproducts see Łos [3], Frayne Morel and Scott [2], the survey Keisler [9] or Bell and Slomson [16]. We use only the definition.

NOTATION. Through all the paper, λ will be a fixed (infinite) cardinal, $\mu = \min \{\mu : \lambda^\mu > \lambda\}$. Notice that μ is a regular cardinal. We use χ, κ for cardinals; $i, j, k, l, \alpha, \beta, \gamma, \delta$ for ordinals, m, n for natural numbers; f , for functions from λ into μ , and g for functions from λ to some $\chi(g) < \mu$. We use F and G for families of such functions. Speaking of functions $f \in F$ with different indexes, we mean they are different functions. D will denote a proper filter over λ . The filter $[E]$ generated by the family E of subsets of λ is

$$\left\{ A : A \subset \lambda, \text{ and for some } A_1, \dots, A_n \in E, \left(\bigcap_{m=1}^n A_m \right) \subset A \right\}.$$

Let $A = \emptyset \pmod{D}$ mean that for some $X \in D$, $A \subset (\lambda - X)$. Models will be denoted by M, N . The universe of M is $|M|$, and the cardinality of a set A is $|A|$, so that the cardinality of (the universe of) M is $\|M\|$.

DEFINITION 1. We say that (F, G, D) is κ -consistent if

A) D is generated by a family of $\leq \kappa$ subsets of λ .

B) If $f_i \in F$, $j_i < \mu$ for $i < \chi < \mu$ and $f^m \in F$, $g^m \in G$

for $m \leq n$ then

$$\{k < \lambda : f_i(k) = j_i \text{ for } i < \chi \text{ and } f^m(k) = g^m(k) \text{ for } m \leq n\} \neq \emptyset \pmod{D}$$

LEMMA 1. There is a family F of 2^λ functions (from λ to μ) such that $(F, \emptyset, \{\lambda\})$ is μ -consistent (this generalizes Ketonen's lemma which was used by Kunen [12] but both had already appeared in Engelking and Karlowicz [1a]).

PROOF. Let H be the set of all pairs (A, h) such that: A is a subset of λ of cardinality $< \mu$; h is a function, from a family S of $< \mu$ subsets of A into μ . The number of $A \subset \lambda$, $|A| < \mu$ is $\sum_{\chi < \mu} \lambda^\chi \leq \mu \cdot \lambda = \lambda$. For each such A , the number of suitable S is

$$\begin{aligned} |\{S : S \subset \{B : B \subset A\}, |S| < \mu\}| &= \sum_{\chi < \mu} |\{S : S \subset \{B : B \subset A\}, |S| = \chi\}| \\ &= \sum_{\chi < \mu} |\{B : B \subset A\}|^\chi = \sum_{\chi < \mu} (2^{|A|})^\chi \leq \sum_{\chi < \mu} (\lambda^{|A|})^\chi = \sum_{\chi < \mu} \lambda^\chi \leq \mu \lambda = \lambda \end{aligned}$$

and for each such S the number of functions from S into μ is $\leq \mu^{|S|} \leq \lambda^{|S|} = \lambda$. So $|H| \leq \lambda$, and in fact $|H| = \lambda$. Let $H = \{(A_k, h_k) : k < \lambda\}$. For every set $B \subset \lambda$ define f_B as follows: $f_B(i) = h_i(B \cap A_i)$ if $h_i(B \cap A_i)$ is defined, and $f_B(i) = 0$ otherwise. Let $F = \{f_B : B \subset \lambda\}$, and we shall prove that F satisfies our demands.

Let $f^i \in F$, $j_i < \mu$ for $i < \chi < \mu$, and let $f^i = f_{B_i}$. Clearly $i_1 \neq i_2$ implies $B_{i_1} \neq B_{i_2}$. As we have $\chi < \mu$ sets $B_i \subset \lambda$, there is $A \subset \lambda$, $|A| = \chi$, such that $i_1 \neq i_2$ implies $A \cap B_{i_1} \neq A \cap B_{i_2}$. Define

$$S = \{A \cap B_i : i < \chi\}, h(A \cap B_i) = j_i \text{ for every } i < \chi.$$

Clearly $(A, h) \in H$, so for some $k < \lambda$, $(A, h) = (A_k, h_k)$. Hence

$$f^i(k) = f_{B_i}(k) = h_k(A \cap B_i) = j_i.$$

So

$$\{k : f^i(k) = j_i \text{ for every } i < \chi\} \neq \emptyset$$

so

$$\{k : f^i(k) = j_i \text{ for every } i < \chi\} \neq \emptyset \pmod{\{\lambda\}}$$

and the lemma is proved.

LEMMA 2. (A) If (F, G, D) is κ -consistent, $\kappa \leq \kappa_1$, then (F, G, D) is κ_1 -consistent.

B) If for every $i < \delta$, (F_i, G_i, D_i) is κ_i -consistent, for $i < j < \delta$, $D_i \subset D_j$, $G_i \subset G_j$, $F_i \supset F_j$; $D = \bigcup_{i < \delta} D_i$, $G = \bigcup_{i < \delta} G_i$, $F = \bigcap_{i < \delta} F_i$ and $\kappa \geq \kappa_i$ for every $i < \delta$ and $\kappa \geq \text{cf}(\delta)$ (the cofinality of δ) then (F, G, D) is κ -consistent.

C) If (F, G, D) is κ -consistent, $F' \subset F$, $G' \subset G$, then (F', G', D) is κ -consistent.

PROOF. Immediate.

LEMMA 3. Suppose (F, \emptyset, D) is κ -consistent, $\mu + |G| \leq \kappa$, (G a set of functions from λ to cardinals $< \mu$). Then there is $F' \subset F$, $|F - F'| \leq \kappa$ such that (F', G, D) is κ -consistent.

PROOF. Let D be generated by $E = \{J_\alpha : \alpha < \kappa\}$ ($J_\alpha \subset \lambda$) and without loss of generality assume that E is closed under finite intersection. Clearly it suffices to prove that for every finite subset G_1 of G there is $F(G_1)$, $|F(G_1)| \leq \kappa$ such that $(F - F(G_1), G_1, D)$ is κ -consistent, because then

$$F' = F - \bigcup \{F(G_1) : G_1 \subset G, |G_1| < \aleph_0\}$$

will satisfy our conclusion.

So let $G_1 = \{g_0, \dots, g_n\}$. Suppose there is no $F(G_1)$ as required. So there is a case of violation of part (2) of the definition of κ -consistency of (F, G, D) . We can remove the involved functions from F , and again we do not get κ -consistency. So we can repeat it κ^+ times. So we can define by induction on $\beta < \kappa^+$, (distinct) functions $f_i^\beta, f_m^{*\beta} \in F$; $i < \chi_\beta < \mu$, $m \leq n$ and ordinals j_i^β $i < \chi_\beta < \mu$ such that:

$$1) \quad f_i^\beta, f_m^{*\beta} \in F - \{f_i^\gamma, f_m^{*\gamma} : \gamma < \beta, m \leq n, i < \chi_\gamma\}$$

2) for every β

$$A_\beta = \{k < \lambda : \text{for every } i < \chi_\beta \quad f_i^\beta(k) = j_i^\beta, \text{ for every } m \leq n \quad f_m^{*\beta}(k) = g_m(k)\}$$

$$= \emptyset \pmod{D}.$$

By the definition of D , for every $\beta < \kappa^+$, as $A_\beta = \emptyset \pmod{D}$ there is $\alpha_\beta < \kappa$ such that $A_\beta \subset (\lambda - J_{\alpha_\beta})$. As the number of α_β 's is κ , and the number of χ_β is $\leq \mu \leq \kappa$, whereas the number of $\beta < \kappa^+$ is κ^+ , clearly there are $\alpha^0 < \kappa$, $\chi^0 < \mu$ such that $|\{\beta < \kappa^+ : \chi_\beta = \chi^0, \alpha_\beta = \alpha^0\}| = \kappa^+$. Without loss of generality assume that $\chi_\beta = \chi^0$, $\alpha_\beta = \alpha^0$ for every $\beta < \mu$. Let $\{\langle j_0^{*\beta}, \dots, j_n^{*\beta} \rangle : \beta < \chi^*\}$ be the set of all sequences of length $n + 1$ of ordinals smaller than $\chi^* = \sup \{|g_m(k)|^+ : m \leq n, k < \lambda\}$. (The cardinal χ^* is $< \mu$, as each g_m is by definition a function from λ into some $\chi < \mu$). (Clearly the number of such sequences is χ^* .) Let

$$A = \{k < \lambda : \text{for every } \beta < \chi^*, i < \chi^0, m \leq n, f_i^\beta(k) = j_i^\beta, f_m^{*\beta}(k) = j_m^{*\beta}\}.$$

As $\chi^* < \mu$, $\chi^0 < \mu$ also $\chi^* \chi^0 + \chi^* (n + 1) < \mu$, so as (F, \emptyset, D) is κ -consistent,

clearly $A \neq \emptyset \pmod{D}$. Hence it cannot hold that $A \subset (\lambda - J_{\alpha^0})$. So we can choose $k \in A$, $k \notin (\lambda - J_{\alpha^0})$. As $k \in A$, for every $\beta < \chi^*$, $i < \chi^0$, $m \leq n$, $f_i^\beta(k) = j_i^\beta$, $f_m^{*\beta}(k) = j_m^{*\beta}$. By the definition of the sequences $\langle j_0^{*\beta}, \dots, j_n^{*\beta} \rangle$, there is $\beta < \chi^*$ such that

$$g_0(k) = j_0^{*\beta}, \dots, g_n(k) = j_n^{*\beta}.$$

So by the definition of A_β , $k \in A_\beta$, but

$$A_\beta \subset \lambda - J_{\alpha^0}, k \notin (\lambda - J_{\alpha^0})$$

contradiction.

LEMMA 4. A) Suppose (F, G, D) is κ -consistent $A \subset \lambda$. Then there is $F' \subset F$, $|F - F'| < \mu$ such that $(F', G, [D \bigcup \{A\}])$ is κ -consistent or $(F', G, [D \bigcup \{\lambda - A\}])$ is κ -consistent.

B) If (F, G, D) is κ -consistent, $A_\alpha \subset \lambda$ for $\alpha < \kappa$, and $\mu \leq \kappa$, then there are $F' \subset F$, $|F - F'| \leq \kappa$, and a filter D' , $D \subset D'$ such that (F', G, D') is κ -consistent and for every $\alpha < \kappa$ either $A_\alpha \in D'$ or $(\lambda - A_\alpha) \in D'$.

PROOF. Clearly it suffices to prove A) as B) follows by repeating A) and using Lemma 2B. Let $D_1 = [D \bigcup \{A\}]$, $D_2 = [D \bigcup \{\lambda - A\}]$. D_1 and D_2 are generated by families of $\leq \kappa$ subsets of λ . (As if $D = [E]$, $|E| \leq \kappa$, then $D_1 = [E \bigcup \{A\}]$, $D_2 = [E \bigcup \{\lambda - A\}]$.)

If (F, G, D_1) is κ -consistent — our conclusion follows. So we can assume that (F, G, D_1) is not κ -consistent. So there are $f_i \in F$, $j_i < \mu$ for $i < \chi < \mu$ and $f^m \in F$, $g^m \in G$ for $m \leq n$ such that

$$B = \{k < \lambda : \text{for every } i < \chi, m \leq n, f_i(k) = j_i, f^m(k) = g^m(k)\} = \emptyset \pmod{D_1}.$$

This implies that for some $X \in D$, $B \subset (\lambda - A) \bigcup (\lambda - X)$. Let

$$F' = F - \{f_i, f^m : i < \chi, m \leq n\}.$$

If (F', G, D_2) is κ -consistent, our conclusion follows. So assume (F', G, D_2) is not κ -consistent, and we shall get a contradiction. So there are $f_i^* \in F'$, $j_i^* < \mu$ for $i < \chi^* < \mu$ and $f^{*m} \in F'$, $g^{*m} \in G$ for $m \leq n^*$ such that

$$B^* = \{k < \lambda : \text{for every } i < \chi^*, m \leq n^*, f_i^*(k) = j_i^*, f^{*m}(k) = g^{*m}(k)\} = \emptyset \pmod{D_2}.$$

So for some $X^* \in D$, $B^* \subset (\lambda - X^*) \bigcup (\lambda - (\lambda - A)) = (\lambda - X^*) \bigcup A$. So $B^* \bigcap B \subset (\lambda - X^*) \bigcup (\lambda - X) = (\lambda - (X^* \bigcap X))$ and as D is a filter $X^* \bigcap X \in D$.

So $B^* \bigcap B = \emptyset$ (mod D). Observing what are B and B^* , we see that we get a contradiction to the κ -consistency of (F, G, D) . (If one D_i is not a filter the proof is the same.)

LEMMA 5. *Let M be a model of cardinality $\chi < \mu$, and $\bar{a}_{l,m} \in |M|^\lambda$ for $l < l_0$, $1 \leq m \leq n_l$, $\mu \leq \kappa$, and (F, \emptyset, D) is κ -consistent. Assume moreover that $p = \{\phi_l(x, y_{l,1}, \dots, y_{l,n_l}) : l < l_0 < \kappa^+\}$, (ϕ_l — formula in the language L of M) and p is closed under conjunctions and for every $l < l_0$, $A^l = \{k < \lambda : M \models (\exists x)\phi_l(x, \bar{a}_{l,1}[k], \dots, \bar{a}_{l,n_l}[k])\} \in D$.*

Then there are $\bar{a} \in |M|^\lambda$, $F' \subset F$, $D' \supset D$, such that : $|F - F'| \leq \kappa$, (F', \emptyset, D') is κ -consistent and for every $l < l_0$ $\{k < \lambda : M \models \phi_l(\bar{a}[k], \bar{a}_{l,1}[k], \dots, \bar{a}_{l,n_l}[k])\} \in D'$.

REMARK. $|M|^\lambda$ is the set of functions from λ into $|M|$.

PROOF. Let $|M| = \{c_i : i < \chi < \mu\}$. For every $l < l_0$ let us define a function g_l from λ into $\chi (< \mu)$ such that:

$$\text{if } M \models (\exists x)\phi_l(x, \bar{a}_{l,1}[k], \dots, \bar{a}_{l,n_l}[k]) \text{ and } j = g_l(k)$$

then $M \models \phi_l[c_j, \bar{a}_{l,1}[k], \dots, \bar{a}_{l,n_l}[k]]$.

Let $G = \{g_l : l < l_0\}$. As $l_0 < \kappa^+$ and (F, \emptyset, D) is κ -consistent, and $\mu \leq \kappa$, there is, by Lemma 3, $F_1 \subset F$, $|F - F_1| \leq \kappa$ such that (F_1, G, D) is κ -consistent. Choose $f \in F_1$ and let:

$$F' = F_1 - \{f\}, \quad \bar{a}[k] = \begin{cases} c_{f(k)} & \text{if } f(k) < \chi \\ c_0 & \text{otherwise} \end{cases}$$

and $D' = [D \bigcup E]$ where $E = \{A_l : l < l_0\}$, $A_l = \{k < \lambda : M \models \phi_l[\bar{a}[k], \bar{a}_{l,1}[k], \dots]\}$. We shall show that (F', \emptyset, D') is κ -consistent, and hence prove the lemma.

As D is generated by a family E_1 of $\leq \kappa$ subsets of λ , clearly D' is generated by $E_1 \bigcup E$, $|E_1 \bigcup E| \leq \kappa$.

Suppose (F', \emptyset, D') is not κ -consistent. So there are $f_i \in F'$, $j_i < \mu$ for $i < \chi_1 < \mu$ and $X' \in D'$ such that

$$A = \{k < \lambda : \text{for every } i < \chi_1, f_i(k) = j_i\} \subset \lambda - X'.$$

As p is closed under conjunctions, E is closed under intersection. So there are $X \in D$, $l < l_0$ such that $X' \supset X \bigcap A_l$. So $A \bigcap A_l \subset (\lambda - X)$. That is

$$\{k < \lambda : \text{for every } i < \chi, f_i(k) = j_i, M \models \phi_l[\bar{a}[k], \bar{a}_{l,1}[k], \dots, \bar{a}_{l,n_l}[k]]\} \subset (\lambda - X).$$

Hence

$$\{k < \mu : \text{for every } i < \chi, f_i(k) = j_i, f(k) = g_l(k)\} \subset (\lambda - X) \bigcup (\lambda - A^l)$$

(A^l — defined in the lemma.)

A contradiction to the κ -consistency of (F_1, G, D) . Thus we have proved the lemma.

REMARK. We did not prove explicitly that D' is a proper filter, but this can be viewed as a special case of the κ -consistency of (F', \emptyset, D') (with empty set of f_i 's).

PROOF OF THE MAIN THEOREM.

REMARK. 1) The theorem is formulated at the beginning.
 2) For simplicity we omit the proof of part (3).
 3) From part (2) and Keisler [8] it is clear that D is λ^+ -good. As in Kunen [12] we can also prove it directly.

We can assume, without loss of generality, that the language of any model M , $\|M\| < \mu$, is of cardinality $\leq 2^{\|M\|} \leq \lambda^{\|M\|} = \lambda$. So let L^0 be a (first-order) language of cardinality λ , which contains, for every $n < \omega$, $n > 0$, λ predicates with n places, and λ function symbols with n places. So we can restrict ourselves to models whose language is included in L^0 , and whose universe is $\chi = \{i : i < \chi\}$ for some $\chi < \mu$. Now the number of sublanguages of L^0 is 2^λ , and for each such L , and $\chi < \mu$, there are $|L|^{2^\chi} \leq \lambda^\lambda = 2^\lambda$ L -models with universe χ . Let

$$\{(M_i, N_i) : i < 2^\lambda\}$$

be a list of all the pairs of elementarily equivalent models, whose language is $L_i \subset L^0$, and whose universes are some cardinals $< \mu$. We shall find an ultrafilter D over λ such that: M_i^λ/D is isomorphic to N_i^λ/D , and M_i^λ/D is κ^+ -saturated if $2^\kappa \leq 2^\lambda$. As the ultrapowers of isomorphic models are isomorphic this is sufficient.

Let

$$|M_i|^\lambda = \{\bar{a}_\alpha^i : \alpha < 2^\lambda\}$$

$$|N_i|^\lambda = \{\bar{b}_\alpha^i : \alpha < 2^\lambda\}.$$

From considerations of cardinalities, it is clear that there is a function R , defined for every $\gamma < 2^\lambda$ such that

A) For every $i < 2^\lambda$, $\alpha < 2^\lambda$ there is $\gamma < 2^\lambda$ such that

$$R(\gamma) = \langle i, 1, \bar{a}_\alpha^i \rangle.$$

B) For every $i < 2^\lambda$, $\alpha < 2^\lambda$, there is $\gamma < 2^\lambda$ such that

$$R(\gamma) = \langle i, 2, \bar{b}_\alpha^i \rangle.$$

C) For every $i < 2^\lambda$ and set of formulas p , $2^{|p|} \leq 2^\lambda$, p is closed under conjunctions and

$$p = \{\phi_l(x, y_{\alpha_{l,1}}, \dots) : l < |p|\} \quad (\alpha_{l,m} < 2^\lambda, \phi_l \in L_i)$$

there are $\gamma < 2^\lambda, \gamma_{\alpha_{l,m}} < \gamma$

$$R(\gamma) = \langle i, p \rangle, R(\gamma_{\alpha_{l,m}}) = \langle i, 1, \bar{a}_{\alpha_{l,m}}^i \rangle.$$

D) For every subset A of λ , there is $\gamma < 2^\lambda$ such that $R(\gamma) = A$.

E) For every γ exactly one of A), B), C), D) occurs.

We shall now define by induction on $\gamma \leq 2^\lambda$ a set of functions F_γ , a filter D_γ and functions H_γ^i , $i < 2^\lambda$ such that:

- 1) For every γ , $(F_\gamma, \emptyset, D_\gamma)$ is $(\lambda + |\gamma|)$ -consistent, $|F_0| = 2^\lambda$, $D_0 = \{\lambda\}$, $|F_0 - F_\gamma| \leq \lambda + |\gamma|$ and for $\beta < \gamma$ $F_\beta \subset F_\gamma$, $D_\beta \supset D_\gamma$.
- 2) H_γ^i is a function from a subset of $|M_i|^\lambda$ into $|N_i|^\lambda$, for $\beta < \gamma$, H_γ^i extends H_β^i , and $|\bigcup_{i < 2^\lambda} \text{Dom } H_\gamma^i| \leq |\gamma|$.
- 3) If $\bar{a}_{\alpha_1}^i, \dots, \bar{a}_{\alpha_n}^i \in \text{Dom } H_\gamma^i$, $\bar{b}_{\beta_m}^i = H_\gamma^i(\bar{a}_{\alpha_m}^i)$ for $1 \leq m \leq n$ and $\phi(x_1, \dots, x_n) \in L_i$ then

$$\{k < \lambda : M_i \models \phi[\bar{a}_{\alpha_1}^i[k], \dots, \bar{a}_{\alpha_n}^i[k]] \Leftrightarrow N_i \models \phi[\bar{b}_{\beta_1}^i[k], \dots, \bar{b}_{\beta_n}^i[k]]\} \in D_\gamma.$$

4) If $\bar{a}_{\alpha_1}^i, \dots, \bar{a}_{\alpha_n}^i \in \text{Dom } H_\gamma^i$, $\phi \in L_i$ then either

$$\{k < \lambda : M_i \models \phi[\bar{a}_{\alpha_1}^i[k], \dots, \bar{a}_{\alpha_n}^i[k]]\} \in D_\gamma \text{ or}$$

$$\{k < \lambda : M_i \models \neg \phi[\bar{a}_{\alpha_1}^i[k], \dots, \bar{a}_{\alpha_n}^i[k]]\} \in D_\gamma.$$

5) If $R(\gamma) = \langle i, 1, \bar{a}_\alpha^i \rangle$ then $\bar{a}_\alpha^i \in \text{Dom } H_{\gamma+1}^i$.

6) If $R(\gamma) = \langle i, 2, \bar{b}_\alpha^i \rangle$ then $\bar{b}_\alpha^i \in \text{Range } H_{\gamma+1}^i$.

7) If $R(\gamma) = \langle i, p \rangle$ and for every $\phi(x, y_{\alpha_1}, \dots, y_{\alpha_n}) \in p$

$$\{k < \lambda : M_i \models (\exists x)\phi(x, \bar{a}_{\alpha_1}^i[k], \dots, \bar{a}_{\alpha_n}^i[k])\} \in D_\gamma$$

then there is $\bar{a}_\alpha^i \in |M_i|^\lambda$ such that for every $\phi(x, y_{\alpha_1}, \dots, y_{\alpha_n}) \in p$

$$\{k < \lambda : M_i \models \phi[\bar{a}_\alpha^i[k], \bar{a}_{\alpha_1}^i[k], \dots, \bar{a}_\alpha^i[k]]\} \in D_{\gamma+1}.$$

8) If $R(\gamma) = A \subset \lambda$ then either $A \in D_{\gamma+1}$ or $(\lambda - A) \in D_{\gamma+1}$.

* * *

If we succeed in the induction $D = D_{(2^\lambda)}$ will be the required ultrafilter. By (8) and (D) it is an ultrafilter. For every $i < 2^\lambda$, it is clear that $H_{2^\lambda}^i$ induces an isomorphism from M_i^λ/D onto N_i^λ/D . [By 5) and (A) the domain of $H_{2^\lambda}^i$ is $|M_i|^\lambda$, by (6) and (B) its range is $|N_i|^\lambda$, and by (3) it preserves all the formulas, hence all the relations and, in particular, the equality.]. By (7) and (C) M_i^λ/D is κ^+ -saturated whenever $2^k \leq 2^\lambda$.

Let us return to the definition by induction, which is the only thing remaining to be proved.

Case I. $\gamma = 0$.

This follows from Lemma 1. [(3) follows from the elementary equivalence of M_i and N_i .]

Case II. γ a limit ordinal.

Define $F_\gamma = \bigcap_{\beta < \gamma} F_\beta$, $D_\gamma = \bigcup_{\beta < \gamma} D_\beta$ and $H_\gamma^i = \bigcup_{\beta < \gamma} H_\beta^i$. It is easy to see that all the conditions (1)–(8) still hold. In particular (1) follows from Lemma 2.B.

Case III. $\gamma = \beta + 1$, $R(\beta) = \langle i, 1, \bar{a}_\alpha^i \rangle$.

First we use Lemma 4.B so that the type realized by \bar{a}_α^i over $\text{Dom } H_\beta^i$ will be decided. Then we use Lemma 5 to extend H_β^i to $\{\bar{a}_\alpha^i\} \bigcup \text{Dom } H_\beta^i$. (We depend on $|L_i| \leq \lambda$.)

Case IV. $\gamma = \beta + 1$, $R(\beta) = \langle i, 2, \bar{b}^i \rangle$.

The same as Case III.

Case V. $\gamma = \beta + 1$, $R(\beta) = \langle i, p \rangle$.

It follows from Lemma 5.

Case VI. $\gamma = \beta + 1$, $R(\beta) = A$ ($\subset \lambda$).

It follows from Lemma 4.A.

So we prove the theorem.

REMARK. We actually proved more than we needed to know about G in order to prove our main theorem. We could have proved even more: we could have generalized all our lemmas, except for 2B, to the case where $< \chi^0$ equations of the form $f(k) = g(k)$ are allowed in Definition 1, with some natural restrictions imposed on χ^0 . Maybe there is a use for these stronger lemmas.

REFERENCES

1. C. C. Chang and H. J. Keisler, *Model theory*, to appear.
- 1a. Engelking and Karlowicz, *Some theorems of set theory and their topological consequences*, Fund. Math. **57** (1965), 275–285.
2. T. Frayne, A. Morel and D. Scott, *Reduced direct products*, Fund. Math. **51** (1962), 195–228.
3. F. Galvin, *Horn sentences*, Annals Math. Logic, **1** (1970), 389–422.
4. J. Los, *Quelque remarques, théorèmes et problèmes sur les classes définissables d’algèbres*, Mathematical interpretations of formal systems, 98–113, North Holland Publ. Co., Amsterdam, 1955.
5. H. J. Keisler, *Reduced products and Horn classes*, Trans. Amer. Math. Soc., **117** (1965), 307–328.
6. H. J. Keisler, *Ultraproducts and elementary classes*, Ph. D. thesis, Univ. of Calif. Berkeley California, 1961. See also Kon, Nederl. Akad. Wetensch. Proc. Ser. A **64** (1961), 477–495. [Indag. Math. 23].

7. H. J. Keisler, *Good ideals in field of sets*, Annals of Math. **79** (1964), 338–359.
8. H. J. Keisler, *Ultraproducts and saturated models*, Koninkl. Nederl. Akad. Wetensch., Proc. Ser. A **67** and Indag. Math. **26** (1964), 178–186.
9. H. J. Keisler, *A survey of ultraproducts*, Proceedings of the 1964 International Congress for logic, methodology and philosophy of science, held in Jerusalem 1964, Bar-Hillel (ed.), North-Holland Publ. Co. Amsterdam, pp. 112–126.
10. H. J. Keisler, *Limit ultrapowers*, Trans. Amer. Math. Soc. **107** (1963), 382–408.
11. S. Kochen, *Ultraproducts in the theory of models*, Annals of Math. (2) **74** (1961), 221–261.
12. K. Kunen, *Ultrafilters and independent sets*, to appear in Trans. Amer. Math. Soc.
13. R. Mansfield, *The theory of Boolean ultrapowers*, Annals Math. Logic **2** (1971), 297–323.
14. R. Mansfield, *Horn classes and reduced direct products*, a preprint.
15. M. D. Morley and R. L. Vaught, *Homogeneous universal models*, Math. Scand. **11** (1962), 37–57.
16. J. L. Bell and A. B. Slomson, *Models and ultraproducts*, North-Holland Publ. Co. Amsterdam, 1969.

UNIVERSITY OF CALIFORNIA

~
LOS ANGELES